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The distribution of the initial short-time displacements of particles is considered for
a class of classical systems under rather general conditions on the dynamics and with
Gaussian initial velocity distributions, while the positions could have an arbitrary dis-
tribution. This class of systems contains canonical equilibrium of a Hamiltonian system
as a special case. We prove that for this class of systems the nth order cumulants of the
initial short-time displacements behave as the 2n-th power of time for all n > 2, rather
than exhibiting an nth power scaling. This has direct applications to the initial short-time
behavior of the Van Hove self-correlation function, to its non-equilibrium generaliza-
tions the Green’s functions for mass transport, and to the non-Gaussian parameters used
in supercooled liquids and glasses.
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1. ON THE STRUCTURE OF THIS PAPER

This paper concerns a universal property of correlations of the initial short-time
behavior of the displacements of particles for a class of ensembles of classical
systems, both in and out of equilibrium (the latter one being somewhat restricted).
Among other things, these correlations (expressed in terms of the so-called cumu-
lants) have applications to neutron scattering,(1–12) to the description of a restricted
class of non-equilibrium systems on small time and length scales,(13–17) and to
heterogeneous dynamics in supercooled liquids and glasses.(18–22)

The property can be formulated as a mathematical theorem, which may
have more applications than are considered in this paper. Our interest is however
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mainly in its physical applications. Since the general theorem and its proof are best
formulated in a rather abstract way which is not necessary for the currently known
physical applications, the paper is split up into a physical part (Part 2) containing
the physical formulation of the Theorem and its applications, and a mathematical
part (Part 3) containing the general mathematical formulation of the Theorem and
its proof.

These two parts are further subdivided into sections. In Sec. 2.1 the physical
motivation for studying particle displacements is given. In Sec. 2.2 we introduce
the physical systems that will be considered. Section 2.3 gives the necessary
definitions to be able to treat the cumulants of the particle displacements. We state
the Theorem in physical terms in Sec. 2.4 and discuss its physical applications in
Sec. 2.5.

As for the mathematical Part 3 of the paper, in Sec. 3.1, we give the general
definition of cumulants of any number of random variables and discuss some of
their properties, while in Sec. 3.2 we present the Theorem in its full mathematical
generality. In Sec. 3.3 we prove the Theorem. In the proof we need an auxiliary
theorem concerning Gaussian distributed variables whose proof is postponed to
the Appendix. Some coefficients occurring in the Theorem are worked out in
Sec. 3.4.

We end with conclusions, which are followed by the Appendix.

2. PHYSICAL PART

2.1. Introduction

Our motivation to consider the displacements of particles originates from
trying to describe the behavior of non-equilibrium systems on all time scales
using the so-called Green’s function theory, introduced by J. M. Kincaid. (13) This
theory aims to describe, among other things, the time evolution of the number
densities, momentum density and energy density, by expressing them in terms
of Green’s functions. It has so far been successfully applied to self-diffusion(13)

and to heat transport(14–16) while a study of mass transport in binary (isotopic)
mixtures (17) is in progress. The main advantage of the Green’s functions over
hydrodynamics is that one expects that they can describe the system on more than
just long time and length scales, in particular also on time scales of the order
of picoseconds and on length scales of the order of nanometers. The connection
between the picosecond and nanometer scale can be understood by realizing that
with typical velocities of 500 m/s, a particle in a fluid at room temperature moves
about 0.5 nm in 1 ps. Hence studying the picosecond and sub-picosecond time
scales could also be relevant for nanotechnology.

For mass transport in multi-component fluids, (13,17) the Green’s functions
Gλ(r, r′, t) have the physical interpretation of being the probability that a single
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particle of component λ is at a position r at time t given that it was at a position
r′ at time zero. At time zero the system is not in equilibrium, in fact, a class of
far-from-equilibrium situations has been studied in this context.(14−17) Given this
interpretation, it is clear that the displacements of single particles are the central
quantities in the Green’s function theory.

Apart from the non-equilibrium aspect, the above interpretation of the Green’s
functions is the same as that of the classical equilibrium Van Hove self-correlation
function Gs(r − r′, t). (1,8,9) In the literature on the classical Van Hove self-
correlation function in the context of neutron scattering on an equilibrium fluid,
(1,8,10) the so-called cumulants of the particle displacements (defined in Sec. 2.3
below) have been studied by Schofield(2) and Sears, (7) among others. The rele-
vance of the cumulants for the Van Hove self-correlation function can be seen
from its Fourier transform, the incoherent intermediate scattering function,1,8−10

which can be measured and is defined as

Fs(k, t) = 〈eikk̂·[r1(t)−r1(0)]
〉
eq

= 〈eik�x1(t)
〉
eq

, (2.1)

where k = k k̂ is a wave vector with length k and direction k̂ (a unit vector), r1(t)
the position of a (single) particle at time t and 〈〉eq an equilibrium average. In the
last equality we have chosen k̂ = x̂ (in an isotropic equilibrium fluid the result
is independent of the direction k̂) and defined �x1(t) as the displacement of the
single particle in the x direction: �x1(t) = x̂ · [r1(t) − r1(0)]. In probability theory
(23,24) log〈exp[ik A]〉 is the cumulant generating function for the random variable
A, so we see from (2.1) that log Fs(k, t) is the cumulant generating function of
�x1(t). Note that �x1(t) is a random variable here as it depends on an initial phase
point drawn from a probability distribution (here the equilibrium distribution). The
cumulant generating function is, by definition, equal to

∑∞
n=1 κn(ik)n/n! where κn

is the nth cumulant. (23,24) The relation of the incoherent intermediate scattering
function and the cumulants of the displacement is thus expressed by(3,5,7,8,25)

Fs(k, t) = exp
∞∑

n=1

κn

n!
(ik)n. (2.2)

This connection with the incoherent scattering function (and thus with neutron
scattering.(1–12) explains the early interest in the cumulants of displacements from
a physical perspective. We note that (2.2) also shows that the cumulants could
be obtained experimentally by measuring Fs(k, t) via small k (“small angle”)
incoherent neutron scattering and fitting the logarithm of the result to a power
series in k. In Sec. 2.5 we will discuss also more recent physical applications of
the cumulants such as the non-equilibrium Green’s functions and non-Gaussian
parameters used in the theory of supercooled liquids and glasses.

In the context of incoherent neutron scattering, it has been noted by
Schofield(2) and Sears (7) that the cumulants κn of the displacement of a
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particle in a time t in a fluid in equilibrium with a smooth interparticle poten-
tial behave for small t as κ2 = O(t2), κ4 = O(t8), κ6 = O(t12), while all odd
cumulants vanish. These results suggested for equilibrium systems with smooth
potentials a behavior as the 2n-th power in t for κn when n > 2 in general, but to
the best of our knowledge no proof of this property is available at present.

We note that an O(t2n) behavior would be in stark contrast to results obtained
for hard disk and hard sphere fluids in equilibrium. (7,25) Sears (7) considered results
up to the 8-th order in t and the 12-th order in t for κ4 and κ6, respectively, for
smooth potentials and he found by using a limit in which the smooth potential
reduces to a hard core potential that for hard spheres κ4 = O(|t |5) and κ6 = O(|t |7),
while the odd cumulants were still zero. An alternative approach was followed
by De Schepper et al. (25) consisting of directly evaluating the Van Hove self-
correlation function for short times for hard spheres based on pseudo-Liouville
operators (which replace the usual ones for smooth potentials). De Schepper et al.
(25) obtained κn = O(|t |n+1) for all even n > 2, with corrections of O(|t |n+2).

The O(t2n) result for smooth potentials is the more remarkable in that a naive
estimate of the short time behavior of κn based on its connection with the moments
would predict a behavior as the n-th order in t . Hence all terms from O(tn) up to
O(t2n−1),3 should vanish. The question we address here is whether this is indeed
general for smooth potentials.

In fact in this paper we shall show that under quite general conditions, the main
one being that in the initial ensemble, the velocities have a multi-variate Gaussian
distribution(24) and are statistically independent of the positions, one can prove a
very general theorem to be presented in the next part. This theorem implies, among
other things, that for a many particle system in which the (interparticle as well as
external) forces are independent of the velocities, the nth order cumulants of the
displacement are indeed O(t2n) for n > 2 and O(tn) for n ≤ 2. This confirms the
above stated expectation, but extends it to a restricted class of non-equilibrium
situations as well, as we will show.

2.2. Class of Physical Systems

In this part we will restrict ourselves to the following class of systems (the
Theorem in Part 2 of the paper concerns a more general class). Consider N point
particles in three dimensions4 whose positions and velocities are denoted by the
three-dimensional vectors ri and vi , respectively, and whose masses are mi , where
i = 1 . . . N . The time evolution of the particles is governed by

ṙi = vi (2.3)

3 Everywhere in this paper “up to O(tα)” means “up to and including O(tα).”
4 Other dimensionalities work just as well.



Theorem on the Distribution of Short-Time Particle Displacements 5

v̇i = Fi (r
N , t)/mi , (2.4)

where Fi is the force acting on particle i , which is supposed to be a smooth function
of the time t and of rN , which is the collection of all positions ri . Likewise, vN

will denote the collection of all velocities vi .
We consider an ensemble of such systems. In the ensemble, the initial prob-

ability distribution P(rN , vN ) of the positions and the velocities of the particles
is such that the velocities each have a Gaussian distribution and are statistically
independent of the positions, i.e.,5

P(rN , vN ) = f (rN )
N∏

i=1

[(
βi mi

2π

)3/2

exp

(
−1

2
βi mi |vi − ui |2

)]
. (2.5)

where ui is the average of the initial velocity vi and βi are positive “inverse
temperature”-like variables. In (2.5), the f (rN ) denotes a general probability
distribution function of the initial positions of the particles. While the distribution
function in (2.5) can describe both equilibrium and non-equilibrium situations, it
always shares with the equilibrium distribution the Gaussian dependence on the
velocities, which is in fact crucial for the Theorem below to hold.

We stress that the forces Fi in (2.5) are independent of the velocities, but
may depend on the positions rN and on the time t in any way as long as they are
smooth. An example of smooth forces would be infinitely differentiable forces
Fi (rN , t), but also Lennard-Jones-like forces are allowed provided the distribution
of the positions f (rN ) assigns a vanishing probability to the particles to be at
zero distance of one another, which is the singular point of the Lennard-Jones-like
potential at which it is not smooth.

Canonical equilibrium for a single or multi-component fluid is just a special
case of these systems. In that case, one has ui = 0, βi = β, Fi = −∂U/∂ri and
f (rN ) ∝ exp[−βU (rN )], where U (rN ) is the potential energy function of the
system.

The probability distribution functions of the form (2.5) in which each particle
has its own mean velocity ui and “inverse temperature” βi , may seem at first of
a mathematical generality which has little physical relevance. Note, however,
that this is a convenient way to describe mixtures of any arbitrary number of
components. In such a mixture, the mean velocities and/or temperatures of the
different components could be selected physically e.g. by having two vessels
with different substances at different temperatures with a divider which is opened
at t = 0, or by means of a laser (or perhaps even a neutron beam) applied at

5 The expression in (2.5) is not the most general Gaussian distribution for vN . While the Theorem in
Part 3 of the paper allows any multivariate Gaussian distribution of the velocities, we have in fact not
found any physical applications for that yet.
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t = 0, tuned to a resonance of one of the components only, which would give the
particles of that component a nonzero average momentum as well as a different
initial “temperature” due to the recoil energy. (10) To what extent such techniques
could ensure the Gaussianity of the velocity distribution is a technical matter that
we will not go into here.

2.3. Definition of Moments and Cumulants

In this paper, when we speak of a random variable, we mean a function of the
positions rN and the velocities vN and possibly the time t . All physical quantities
are variables of this kind. For such variables A(rN , vN , t), the average with respect
to the distribution function P(rN , vN ) will be denoted by

〈A〉 =
∫

drN dvN P(rN , vN )A(rN , vN , t). (2.6)

Throughout the paper, A’s will denote general variables.
We define �ri (t) = (�xi (t),�yi (t),�zi (t)) as the displacement of particle i

in time t , where i = 1 . . . N and the time dependence is suppressed for brevity.
The nth moment6 of �xi (t) is the average of its nth power, and is denoted as

µn ≡ 〈�xn
i (t)
〉
, (2.7)

where the dependence on i and t on the left-hand side (lhs) has been suppressed.
In the following we will also suppress the t dependence in �xi . The cumulants
of �xi ,6 denoted by κn , are equal to the moments µn with certain factorizations
of them subtracted and thus sensitive to the correlations of �xi . Their precise
definition is via the cumulant generating function(23,24)

�(k) ≡ log〈exp[ik�xi ]〉 =
∞∑

n=1

κn

n!
(ik)n. (2.8)

from which the κn follow as

κn ≡ ∂n�

∂(ik)n

∣∣∣∣
k=0

. (2.9)

An alternative notation for the cumulants, which is more analogous to (2.7 ) and
which is especially convenient in the case of several variables, is (24)

〈〈
�x [n]

i

〉〉 ≡ κn. (2.10)

6 Although the moments µn and cumulants κn are really the “moments and cumulants of the probability
distribution function of �xi (t),” we will refer to them simply as the “moments and cumulants of
�xi (t).”
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We stress here that the superscript [n] is not a power. Furthermore, we will follow
the convention that the superscript will not be denoted if n = 1, i.e., 〈〈�xi 〉〉 ≡
〈〈�x [1]

i 〉〉 (which is also equal to κ1 = 〈�xi 〉).
The cumulant generating function in (2.8) can be expressed in terms of the

moments µn since �(k) = log〈exp[ik�xi ]〉 = log[1 +∑∞
n=1(ik)nµn/n!]. The re-

lations between the cumulants and moments can then be found by Taylor expanding
the logarithm around 1 and using a multinomial expansion for the powers of the
second term inside the logarithm. This gives, somewhat formally,

κn = − n!
∑

{p	≥0}∑∞
	=1 	p	=n

( ∞∑
	=1

p	 − 1

)
!

∞∏
	=1

(−µ	/	!
)p	

p	!
(2.11)

For instance, for the first few κn , (2.11) becomes κ1 = µ1, κ2 = µ2 − µ2
1 and

κ3 = µ3 − 3µ1µ2 + 2µ3
1. (23,24)

In general, κn = µn± factored terms, where the factored terms contain all
ways of partitioning the moment µn into a product of lower moments µ	 such that
all 	 values (taking into account their “frequencies of occurrence” p	) add up to n.

Apart from the cumulants κn of the single variable �xi , we will also need
the general definition of cumulants which applies to the displacement of the same
particle in different spatial directions as well as the displacements of different
particles. Like for the cumulants of a single particle’s displacement, the expressions
for the general cumulants are moments with factored forms subtracted, e.g.

〈〈�x1; �x2〉〉 = 〈�x1�x2〉 − 〈�x1〉〈�x2〉 (2.12)

〈〈�x1; �y1; �z1〉〉 = 〈�x1�y1�z1〉 − 〈�x1〉〈�y1�z1〉 − 〈�x1�y1〉〈�z1〉
− 〈�x1�z1〉〈�y1〉 + 2〈�x1〉〈�y1〉〈�z1〉 (2.13)〈〈

�x [2]
1 ; �y[2]

1

〉〉
= 〈�x2

1�y2
1

〉− 〈�x2
1

〉〈
�y2

1

〉− 2〈�x1�y1〉2

− 2〈�x1〉
〈
�x1�y2

1

〉− 2
〈
�x2

1�y1
〉〈�y1〉

+ 8〈�x1〉〈�x1�y1〉〈�y1〉 − 6〈�x1〉2〈�y1〉2. (2.14)

Here, the semi-colons are inserted to avoid ambiguity and to make it explicit that
the expressions inside the double angular brackets are not to be multiplied. This is
different from the notation for the multivariate cumulants used by Van Kampen(24)

who denotes the above cumulants as 〈〈�x1�x2〉〉, 〈〈�x1�y1�z1〉〉 and 〈〈�x2
1�y2

1〉〉,
respectively, which would suggest that the expressions inside the double brackets
are products of powers, which they are not.

The general definition of the multivariate cumulants will be given in (3.9) in
Sec. 3.1 (where we will also show how the various prefactors are determined) and
can also be found in refs. 23 and 24.
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2.4. The Theorem in Physical Terms

For the class of physical systems described above, the general and somewhat
formal Theorem in Part 3 of the paper states that, in a less abstract physical notation〈〈

�x [n1x ]
1 ; �y

[n1y ]
1 ; �z[n1z ]

1 �x [n2x ]
2 ; �y

[n2y ]
2 ; �z[n2z ]

2 ; · · ·〉〉
=
{

c{niη}t
n + O(tn+1) if n ≤ 2

c{niη}t
2n + O(t2n+1) if n > 2,

(2.15)

where niη are non-negative numbers (some may be zero), i = 1 . . . N , η = x, y or
z and

n =
N∑

i=1

∑
η=x,y,z

niη (2.16)

is the order of the cumulant on the lhs of (2.15).
Note that the cumulants κn that occur in the expansion of the Van Hove self-

correlation function are special cases of these nth order cumulants, i.e., we can
write

κn = 〈〈�x [n]
i

〉〉 =
{

cntn + O(tn+1) for n ≤ 2

cnt2n + O(t2n+1) for n > 2.
(2.17)

Section 3.4 contains the expressions for the cn and the c{ni }.
We stress once more that on the basis of the connection between the cumulants

and the moments (2.11), only an O(tn) scaling of the nth order cumulants is to be
expected, so that this is a nontrivial theorem. The result in (2.17) generalizes the
results of Schofield(2) and Sears (7) who found that for an equilibrium liquid, κ2 =
O(t2) while κ4 = O(t8) and κ6 = O(t12). The results in (2.15) and (2.17) hold,
however, also out of equilibrium as long as the initial distribution of the particle
velocities is Gaussian and statistically independent of the particles’ positions.

2.5. Applications

We will now discuss a number of physical applications of the Theorem in
(2.15)–(2.17) just presented.

2.5.1. The Equilibrium Van Hove Self-Correlation Function

a) In incoherent neutron scattering on an equilibrium fluid, one essen-
tially measures the equilibrium Van Hove self-correlation function Gs(r, t) (with
r = |r − r′|), which is the Fourier inverse of the incoherent scattering function
Fs(k, t).(1,8–12) If the length of the wave vector k in Fs(k, t) is small, then ac-
cording to (2.2) Fs(k, t) ≈ exp[−κ2k2/2], i.e., nearly Gaussian, and so its inverse
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Fourier transform Gs(r, t) is also approximately Gaussian. Corrections to this
Gaussian behavior can be found by resumming Fs(k, t) = exp

∑
n κn(ik)n/n! in

(2.2) to the form

Fs(k, t) = e− 1
2 κ2k2

[
1 +

∞∑
n=4

n even

bnkn

]
(2.18)

using that in equilibrium odd cumulants are zero. For n ≥ 4, the coefficients bn

are given by(17)

bn =
∑

{p	≥0; 	 even}∑∞
	=4,	 even 	p	=n

∞∏
	=4

	 even

[
1

p	!

(κ	

	!

)p	

]
. (2.19)

For example, b4 = κ4/4!, b6 = κ6/6!, b8 = (κ8 + 35κ2
4 )/8!. Fourier inverting the

resummed form of Fs(k, t) leads to

Gs(r, t) = e−w2

√
2πκ2


1 +

∞∑
n=4

n even

bn

(2κ2)n/2
Hn(w)


 . (2.20)

Here Hn is the nth Hermite polynomial and the dimensionless w ≡ r/
√

2κ2. We
note that the series in (2.20) appears to have a fairly rapid convergence. (6) Taking
just the first few terms would give

Gs(r, t) = e−w2

√
2πκ2

[
1 + κ4

4!4κ2
2

H4(w) + κ6

6!8κ3
2

H6(w) + . . .

]
. (2.21)

The Theorem in (2.17) provides a justification for the expansion in (2.20)
of the self part of the Van Hove function Gs for short times t in the following
way. As (2.19) and (2.20) show, the cumulants κn≥4 give, via the bn , corrections
to a Gaussian behavior of Gs(r, t). The Gaussian factor e−w2

suggests that typical
values of w are O(1) in (2.20) , so also Hn(w) = O(1). Its prefactor in (2.20)
is, however, t-dependent through bn/(2κ2)n/2. Given the relation between bn and
κn in (2.19) it is easy to see that they scale similarly, i.e., if the conditions of
the Theorem are satisfied so that κn>2 = O(t2n) then also bn>2 = O(t2n). Since
κ2 = O(t2), we obtain

bn

(2κ2)n/2
= O(tn). (2.22)

This means that the series in (2.20) is well-behaved for small times t, in that
each next term is smaller than the previous one, and that by truncating the
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series7 one obtains for small t approximations which can be systematically
improved by taking more terms into account. Note that in contrast if κn had
been O(tn), each term in the series in (2.20) would have been of the same
order.

b) An expansion of a similar form as (2.20) was found by Rahman(4) for
Gs(r, t), and by Nijboer and Rahman(5) for Fs(k, t). Their expressions are in terms
of the so-called non-Gaussian parameters αn . These non-Gaussian parameters
have recently also found applications in the context of supercooled liquids and
glasses, where they have been proposed as a kind of order parameter for the glass
transition(11,12,18) and as measures of “dynamical heterogeneities” in supercooled
liquids and glasses.(19−22) We note that while supercooled liquids and glasses are
not in true equilibrium (for that would be the solid phase), they do have a Gaussian
velocity distribution ‘inherited’ from the fluid phase.

Given the present interest in these non-Gaussian parameters αn , we will
now compare them with the cumulants κn . The non-Gaussian parameters αn are
defined in terms of the distance �R =

√
�x2(t) + �y2(t) + �z2(t) traveled by

any particle in time t in a three dimensional fluid, as (4)

αn ≡ 〈�R2n〉
〈�R2〉n(2n + 1)!!/3n

− 1. (2.23)

For isotropic fluids, 〈�R2n〉 = (2n + 1)〈�x2n(t)〉 = (2n + 1)µ2n , so that (2.23)
can then be written as

αn = µ2n − (2n − 1)!!µn
2

(2n − 1)!!µn
2

. (2.24)

We now see that even though both the αn and the cumulants κn>2 are, by construc-
tion, zero for Gaussian distributed variables, in (2.24) the αn are 2n-th moments
µ2n with only the most factored term, µn

2, subtracted, while the cumulants κ2n in
(2.11) have all possible factored terms subtracted. Using (2.24) and the inverse
of the relation between κn and µn in (2.11) (which can be found by using the
generating functions), it is possible to express the αn in terms of κn as

αn = n!
∑

0≤p	<n∑∞
	=1 	p	=n

∞∏
	=1

[
1

p	!

(
2	κ2	

(2	)!κ	
2

)p	
]

. (2.25)

7 When truncating, terms that are kept have to include not just the leading order in t , but at least all
terms up to O(tk ) if terms up to Hk are kept. In numerical approaches it is possible to retain the full
terms.
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According to this formal relation, the first few αn are given by

α2 = 1

3

κ4

κ2
2

(2.26)

α3 = κ4

κ2
2

+ 1

15

κ6

κ3
2

(2.27)

The Theorem in (2.17) says that for small times t , κ2 = O(t2) and κn>2 =
O(t2n), so that κ2n/κ

n
2 = O(t2n). According to (2.25), all αn have a contribution

from κ4/κ
2
2 , so that all αn are of O(t4), in contrast to the cumulants κ2n , which are

of increasing order in t with increasing n. In fact, using (2.25) and the Theorem,
one can derive straightforwardly that the dominant term for small t in (2.25) is the
one with p1 = n − 2, p2 = 1 and p	>2 = 0, which leads to

αn ∼ n(n − 1)

2
α2 (2.28)

plus a correction of O(t6). Thus, for small t , α3 is approximately three times α2,
α4 six times α2 etc. Such approximate relations are indeed borne out by Rahman’s
data on α2, α3 and α4 for small t . (4,8)

In terms of the αn , the expansion of Gs in (2.21) becomes, with the help of
(2.26),

Gs(r, t) = e−w2

√
2πκ2

[
1 + 3α2

4!4
H4(w) + 15(α3 − 3α2)

6!8
H6(w) + . . .

]
. (2.29)

Although formally equivalent to (2.21), for small t , (2.29) is somewhat less conve-
nient, because one cannot see right away that the last term (involving H6) is O(t6)
rather than O(t4), as one may naively suspect from α2 = O(t4) and α3 = O(t4).
Thus, a cancellation between the leading orders of α3 and 3α2 has to take place,
which, especially using a numerical evaluation of the αn , may be hard to obtain.
On the other hand, in (2.21), this cancellation is automatic.

We note that, somewhat surprisingly, the data of Rahman also show that the
relation between αn and α2 in (2.28) is still approximately satisfied for larger
times. (4) This seems even true for hard spheres. (26) Thus the higher order non-
Gaussian parameters αn>2 are apparently dominated by α2 for larger times just as
they are for smaller times t . This dominance of α2 makes it hard to extract from
these higher order non-Gaussian parameters any information that was not already
contained in α2. The cumulants κn , or perhaps the bn , may contain additional
information about correlations in (supercooled) fluids in a more accessible form
(compared to the αn), and may therefore be a more suitable choice to investigate
such correlations for all times t .

c) Returning to the series in (2.20), although it may be well-behaved for
small enough t , it is not known up to what time this remains so. Since bn = O(t2n)
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only to leading order in t , there is a point in time after which the O(t2n) term is
no longer a good approximation, and this may be related to the point at which
the series in (2.20) is no longer guaranteed to be useful. Rahman investigated
α2 (as well as α3 and α4) numerically for a model of liquid argon (tempera-
ture 94 K, density 1.4 · 103 kg/m3). (4) (See also ref. 8 for a broader overview.)
Figure 1 shows a sketch of the non-Gaussian parameter α2 as a function of t ,
based on fig. 7 in ref. 4 and fig. 4.11 in ref. 8. One sees that α2 is a very flat
function near t = 0, which persists only up to roughly t ≈ 0.1–0.2 ps. At that
point the curve shoots up rapidly, leading to a large “hump,” which lasts up to
about 10 ps (or perhaps somewhat below that), after which it starts to decrease to
zero.

Although somewhat outside the scope of this paper, we would like to give a
possible interpretation of the numerical results sketched in Figure 1 for moderate
and high densities. 1) The flat behavior of α2 near t = 0 corresponds to the O(t4)
behavior as given by the Theorem in (2.17). 2) Because hard spheres can be
seen as a limit of a smooth interparticle potential in which the steepness goes
to infinity, (7) and the potential used by Rahman is rather steep, the shoot-up
phenomenon at ≈ 0.1 ps may well be related to the hard-spheres result of De
Schepper et al. (25) that κn = O(|t |n+1), or α2 = O(|t |5/t4) = O(|t |), as follows.
The steep but smooth potential of Rahman will resemble a hard sphere fluid on
time scales ts on which a collision has been completed. (27) Thus at t = ts the
scaling O(t4) for α2 ought to go over to O(|t |), or in fact, because of the duration
ts of the ‘collision,’ to O(|t − ts |), which would require the kind of sharp increase
observed by Rahman at ≈ 0.1 ps. 3) While a persistence of non-Gaussianity
occurs already in dilute systems, (26) this is due to a different mechanism than in

1) smooth
   potential

   collisions
2) hard sphere−like

2α

t

t
4

~10 ps~1 ps~0.1 ps
t

   diffusion
5) cage

3) caging
4) escape from cage

Fig. 1. Sketch of the behavior of the non-Gaussian parameter α2 = κ4/(3κ2
2 ) for regular liquids in

equilibrium in different time regimes (based on fig. 7 in ref. 4 and fig. 4.11 in ref. 8 ), with our physical
interpretation for each regime.
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denser systems, where it comes about because the particle is trapped in a “cage”
formed by its neighboring particles, with which it has repeated and correlated
collisions. This effect is dominant at high densities. (19) 4) The decay of α2 to zero
indicates that the motion becomes Gaussian and presumably sets in (for dense
systems) when the particle manages to escape its cage. After escaping, it finds
itself in a new cage environment consisting largely of particles with which it has
not interacted before. This motion from cage to cage is called cage diffusion. (28)

5) From a central limit theorem argument using that successively visited cages
after many cage escapes have little correlation with each other, one would then
expect Gaussian (and presumably but not necessarily diffusive) behavior. The
precise mechanism of the long-time behavior at low densities falls outside the
scope of this paper.

Also in simulations of a supercooled argon-like mixture, (19) α2 plotted as a
function of time shows a flat curve for short times and a sharp increase around 0.1
ps, while α3(t) shows similar behavior. The interesting part from the perspective
of supercooled liquids and glasses, however, is in how far that increase continues
and on what time scale and how α2 decays back to zero, which takes a very long
time for supercooled liquids and is related to the time scale at which particles
escape their cages. But the Theorem in (2.15)–(2.17) has nothing to say about α2

on that time scale.

2.5.2. Local Equilibrium Systems

As a first example of a non-equilibrium system to which the theorem may
apply, we consider a fluid not too far from equilibrium, such that it has initially
roughly an equilibrium distribution except that the temperature, fluid velocity
and density are spatially dependent, i.e., it is in local equilibrium. The class of
initial distributions in (2.5) does not seem to be of that form, and indeed, if βi

and ui are allowed to vary with ri , then the proof as given in the next part of
this paper, runs into difficulties. Nonetheless, one can construct distributions of
the form (2.5) which physically describe precisely the local equilibrium situation.
Imagine dividing the physical volume V into M cells of equal size and assigning
to each cell a a temperature βa , a fluid velocity ua and a density na . The particles
of the system are divided up as well, putting Na = naV/M particles in each
cell, such that particles 1 through N1 are in cell 1, N1 + 1 through N1 + N2

are in cell 2 etc. This can be accomplished by choosing f (rN ) in (2.5) such
that the chance for these particles to be outside their cell is zero. Next, we set
all the βi and ui of the particles in cell a equal to βa and ua . If the cells are
big enough so that fluctuations in the number of particles can be neglected, this
situation describes local equilibrium just as well as spatially dependent β(ri )
and u(ri ) can, and for this constructed local equilibrium, the Theorem in (2.15)
holds.



14 van Zon and Cohen

2.5.3. Out-of-Equilibrium Phenomena on Very Short Time Scales

In this section, we consider somewhat more general out-of-equilibrium sys-
tems, namely those that start at t = 0 with a Gaussian velocity distribution. The
distribution of the positions of the particles is allowed to be very different from
that in equilibrium, however.

The cumulants whose short time scaling was obtained here also occur natu-
rally in the Green’s function theory, which was developed for far-from-equilibrium
phenomena on the picosecond and nanometer scales.(13−17) Considering for ex-
ample a mixture of two components, one can write the density of component λ

(λ = 1 or 2) at position x and for simplicity here in one dimension as: (17)

nλ(x, t) =
∫

dx ′ Gλ(x, x ′, t)nλ(x ′, 0), (2.30)

where the non-equilibrium Green’s function Gλ(x, x ′, t) is the probability that a
particle of component λ is at position x at time t given that it was at position x ′ at
time zero. By an expansion detailed in a future publication(17) Gλ can be written
similarly as Gs in (2.20), as

Gλ(x, x ′, t) = e−w2

√
2πκ2

.

[
1 +

∞∑
n=3

bn

(2κ2)n/2
Hn(w)

]
(2.31)

Here the dimensionless w ≡ (x − x ′ − κ1)/
√

2κ2 and

bn =
∑

{p	≥0}∑∞
	=3 	p	=n

∞∏
	=3

[
1

p	!

(κ	

	!

)p	

]
. (2.32)

Some examples are: b3 = κ3/3!, b4 = κ4/4!, b5 = κ5/5! and b6 = (κ6 +
10κ2

3 )/6!. These equations are non-equilibrium generalizations of the equations
for the equilibrium Van Hove self-correlation function in (2.20) and (2.19), re-
spectively. However, different from the case of the Van Hove self-function, in
the Green’s function theory, the κn , and thus the bn through (2.32), depend on
x ′ because in that theory the single particle i of component λ is required to
have been at the position x ′ at time zero. This requirement can be imposed by
multiplying the probability distribution function in (2.5) by δ(xi − x ′) (times a
proper normalization). The resulting distribution describes the subensemble of the
original ensemble for which particle i is at x ′ at time zero. Note also that it is
still of the same form as (2.5), with f (rN ) → f ′(rN ) = δ(xi − x ′) f (rN ), where
x ′ is just a parameter. Thus, as long as we restrict ourselves to systems with
Gaussian initial velocity distributions, the Theorem in (2.17) still applies. Note
that the f (rN ) may describe any non-equilibrium distribution of the positions of
the particles.
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The Gaussian factor in (2.31) suggests as before that typical values of w are
O(1), so Hn(w) = O(1). Its prefactor in (2.31) is bn/(2κ2)n/2. Using the Theorem
in (2.17) that κn = O(t2n) and the relation between bn and κn in (2.32) it is easy
to see that also bn = O(t2n). Since κ2 = O(t2), we obtain

bn

(2κ2)n/2
= O(tn). (2.33)

This means that, for these systems, the series for the non-equilibrium Green’s
functions Gλ in (2.31) are well-behaved for small times t (just as the equilibrium
Van Hove self-correlation function was) and that by truncating the series one
obtains for small t approximations which can be systematically improved by taking
more terms into account. This statement is in fact not restricted to the one-
dimensional case of the Green’s functions discussed here; the three-dimensional
version, for which the bn become tensors and which will be presented elsewhere, (17)

exhibits—when the general formulation in (2.15) is used—the same scaling with
t of the subsequent terms in the series for the Green’s functions.

We note that in non-equilibrium situations, α2 = κ4/(3κ2
2 ) may have a sim-

ilar behavior as sketched in Figure 1 for the equilibrium α2. Although a proper
numerical test is yet to be performed, this expectation is roughly consistent with
numerical results of the Green’s function for heat transport.(14−16) In that case
the contribution of the non-Gaussian corrections in (2.31) (involving the Hermite
polynomials) were most significant on the sub-picosecond time scale, whereas ex-
trapolation indicated that hydrodynamic-like results may occur for times possibly
as short as 2 ps. (15)

In view of the possible application to nano-technology, it is important to
understand the behavior on very short time scales and the related small length
scales over which a particle typically moves at such time scales. The Green’s
function theory can potentially describe a system on all time scales. The current
Theorem assures that this theory can at least consistently describe the very short
time scales, by showing that the expansion of the Green’s function is well-behaved.
For practical applications, and to know how short the time scales must be for the
Theorem to apply, it is still necessary to determine the coefficient of the O(t2n) of
κn , i.e. the cn in (2.17) (cf. Sec. 3.4). This will require a numerical evaluation of
the moments of derivatives of the forces, which we plan to do in the future. The
behavior of κn at longer time scales, will also be investigated in the future, with
special attention to the question whether the Green’s functions give hydrodynamic
behavior for long times. (17)

3. MATHEMATICAL PART

In this part, we present (Sec. 3.2) and prove (Sec. 3.3) the Theorem in its
most general, mathematical form.
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In the mathematical formulation of the Theorem, as well as in its proof, it is
convenient to adopt a different notation than the one introduced in Part 2. Since
from a mathematical point of view it does not matter whether different degrees of
freedom are associated with different spatial directions or with different particles,
the mathematical notation will treat all these degrees of freedom on the same
footing. This can be achieved by calling the x component of particle one the first
degree of freedom, its y component the second, its z component the third, and
then the x component of particle two the fourth degree of freedom, etc. The total
number of degrees of freedom is then N = 3N .

One can achieve the goal of describing all degrees of freedom in the same
way by associating with each degree of freedom a (generalized) position ri and a
(generalized) velocity vi , and rewriting the three dimensional real positions ri and
velocities vi by using the mapping

r1 →

 r1

r2

r3


, r2 →


 r4

r5

r6


, . . . (3.1)

and similar for the velocities and the average velocities, i.e.,

v1 →

 v1

v2

v3


, v2 →


 v4

v5

v6


, . . . (3.2)

u1 →

u1

u2

u3


, u2 →


u4

u5

u6


, . . . (3.3)

respectively.
Applying this mapping on the equations of motion (2.3) and (2.4), one finds

that the generalized positions ri and velocities vi (collectively denoted by rN and
vN respectively) satisfy

ṙi = vi (3.4)

v̇i = ai

(
rN , t

)
(3.5)

where the ai (rN , t) are the accelerations which follow from the mapping

F1(rN , t)

m1
→




a1(rN , t)

a2(rN , t)

a3(rN , t)


,

F2(rN , t)

m2
→




a4(rN , t)

a5(rN , t)

a6(rN , t)


, . . . (3.6)

We note that a possible interpretation of this formulation is that of N “par-
ticles” moving in just one spatial dimension. This convenient picture, in which
each ri and vi may be seen as the one-dimensional position and velocity of a
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“particle” i respectively, will be used below, even though the system is not really
one-dimensional. Cumulants that in the physical formulation of the previous part
involved both different spatial directions as well as different particles (as e.g.
on the lhs of (2.15)), become in this picture cumulants involving just different
“particles” (degrees of freedom), and these kinds of cumulants are therefore the
quantities of interest here.

We remark that the proof of the general Theorem that we will give below
is a “physicists’ proof,” meaning that the proof does not claim to have complete
mathematical rigor but has every appearance of being correct, perhaps under mild
and reasonable additional conditions such as the existence of the moments and
cumulants.

First, however, we need to introduce the general definition of multivariate
cumulants, (23,24) needed in the Theorem and its proof, and some of their properties.

3.1. Preliminaries: The General Definition

and Properties of Cumulants

Here we will give the general definition of cumulants which applies to any
number of variables, i.e., of the multivariate cumulants. (23,24) Thereto we introduce
a set of (general) random variables Aq with q = 1 . . . Q, for which we assume that
a probability distribution function exists. The cumulant generating function of the
Aq is defined as

�(k1, . . . kQ) ≡ log

〈
exp

Q∑
q=1

ikq Aq

〉
. (3.7)

Here 〈 〉 denotes an average with the probability distribution function of the Aq .
Note that if the Aq are expressed in terms of yet other random variables (later, in
the Theorem, the rN and vN ) the average may equivalently be taken with their
probability distribution function. With the help of this generating function, the
cumulants can be expressed similarly as in (2.9) by

〈〈
A[n1]

1 ; . . . ; A
[nQ ]
Q

〉〉 ≡

 Q∏

q=1

∂nq

∂(ikq )nq


�(k1, . . . kQ)

∣∣∣∣∣
{kq }=0

. (3.8)

Note that {kq} = 0 is a short-hand notation for k1 = 0, k2 = 0, . . . , kQ = 0.
Furthermore, when one of the nq is equal to 1, we will omit the correspond-

ing superscript [1], e.g., 〈〈A1; A2〉〉 = 〈〈A[1]
1 ; A[1]

2 〉〉. We stress once more that our
notation is different from Van Kampen’s, (24) who writes 〈〈An1

1 An2
2 . . . A

nQ

Q 〉〉. In par-
ticular, the square brackets in the superscripts are intended to show that they are
not powers of the Aq , while the semi-colons in the expressions inside the double
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angular brackets indicate that one should not interpret them as products, but as

defined by (3.8). Note also that the expression A
[nq ]
q only has a meaning inside a

cumulant.
The cumulants can be expressed in terms of moments analogously to (2.11):

〈〈
A[n1]

1 ; . . . ; A
[nQ ]
Q

〉〉 = −n1! · · · nQ!
∑

{p{	}≥0}∑
{	} 	q p{	}=nq

(∑
{	}

p{	} − 1

)
!
∏
{	}

1

p{	}!

×
(

−
〈
A	1

1 . . . A
	Q

Q

〉
	1! · · · 	Q!

)p{	}

, (3.9)

where {	} = {	1, . . . , 	Q} denotes a set of Q nonnegative 	q values, q = 1 . . . Q
and p{	} gives the frequency of occurrence of that set. In (3.9) the sum is
over the frequencies p{	} of all possible sets {	} (and thus all possible mo-

ments 〈A	1
1 . . . A

	Q

Q 〉) for which
∑∞

	=1 	q p{	} = nq . This is nothing else than fac-

torizing the expression An1
1 . . . A

nQ

Q in all possible ways. Hence, the cumulants

〈〈A[n1]
1 ; . . . ; A

[nQ ]
Q 〉〉 = 〈An1

1 . . . A
nQ

Q 〉± factored terms that are products of the mo-

ments 〈A	1
1 . . . A

	Q

Q 〉 such that the 	q values for fixed q add up (taking into account
their frequencies p{	}) to nq . For some examples of multivariate cumulants, see
(2.12)–(2.14).

We furthermore define the order n of a cumulant as the sum n =∑Q
q=1 nq .

Note that the maximum number of moments that are multiplied in any term in
(3.9) is (taking into account the frequencies) equal to the order of the cumulant.

We will now give four properties of the cumulants that follow from its
definition in (3.7) and (3.8) and that can be used to manipulate expressions inside
the double angular brackets of the cumulants.

(a) The first property is that, as with averages, constants may be taken in front
of cumulants: 〈〈

(C A1)[n1]; . . .
〉〉 = Cn1

〈〈
A[n1]

1 ; . . .
〉〉

(3.10)

(b) The second property concerns cumulants where the same quantity occurs
more than once: 〈〈

A[n1]
1 ; A[n2]

1 ; . . .
〉〉 = 〈〈A[n1+n2]

1 ; . . .
〉〉

(3.11)

(c) The third is a multinomial expansion:〈〈
(A1 + . . . + AQ)[n]; . . .

〉〉 = ∑
{kq }≥0∑Q
q=1 kq=n

n!∏Q
q=1 kq !

〈〈
A[k1]

1 ; . . . ; A
[kQ ]
Q ; . . .

〉〉
.

(3.12)
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(d) Finally, cumulants have the property that they are shift invariant if their
orders are larger than one. (23,24) E.g., if C1 is a constant,〈〈

(A1 + C1)[n]; . . .
〉〉 = 〈〈A[n]

1 ; . . ..
〉〉

(3.13)

Only if the order of the cumulant is one, does a shift have any effect:

〈〈A1 + C1〉〉 = 〈〈A1〉〉 + C1. (3.14)

3.2. The Theorem

Theorem. For a classical dynamical system of N degrees of freedom described
by (generalized) coordinates ri and velocities vi (i = 1 . . .N ), collectively denoted
by rN and vN respectively, for which

a) the time evolution is given by the equations of motion

ṙi = vi (3.15)

v̇i = ai (r
N , t) (3.16)

with velocity-independent, smooth accelerations ai , and
b) the initial ensemble is described by a probability distribution in which the

velocities are multivariate Gaussian(24) and independent of the coordinates
ri , i.e., with a distribution function of the form

P(rN , vN ) = f (rN )
√

det [�/(2π )]

× exp

[
− 1

2

N∑
i, j=1

�i j (vi − ui )(v j − u j )

]
, (3.17)

where � is a positive, symmetric N × N matrix with constant elements
�i j , ui is the average velocity corresponding to the i th degree of freedom,
and f (rN ) is the probability distribution of the coordinates.

When these conditions are satisfied, the cumulants8

κ{ni } ≡ 〈〈�r [n1]
1 ; �r [n2]

2 ; . . . ; �r [nN ]
N

〉〉
(3.18)

of the displacements

�ri ≡ ri (t) − ri (0) (3.19)

8 These cumulants are defined in Sec. 3.1 with Q → N , q → i and Aq → �ri .
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(whose t dependence has been suppressed) satisfy for sufficiently short initial
times t

κ{ni } =
{

c{ni }t
n + O(tn+1) if n ≤ 2

c{ni }t
2n + O(t2n+1) if n > 2,

(3.20)

where n is the order of the cumulant given by

n = n1 + n2 + . . . + nN . (3.21)

The coefficients c{ni } will be given later in (3.44) in section (3.4).

3.3. Proof of the Theorem

3.3.1. Strategy Based on Gaussian Velocities

The Theorem formulated in Eqs. (3.15–3.21) in Sec. 3.2 will be proved in
this section, although we will defer the details of the proof of a required auxiliary
theorem to the Appendix for greater clarity of the procedure.

To obtain the initial, short time behavior of the moments and cumulants of
the displacement, �ri may be Taylor-MacLaurin expanded around t = 0 as

�ri =
∞∑

γ=1

dγ ri

dtγ

∣∣∣
t=0

tγ

γ !
=

∞∑
γ=1

dγ−1vi

dtγ−1

∣∣∣
t=0

tγ

γ !
(3.22)

where we used (3.15). Because of the equations of motion (3.15) and (3.16), the
dγ vi/dtγ , viewed as functions of rN and vN (at time t) as well as explicitly of t ,
are recursively related by

dγ+1vi

dtγ+1
=

N∑
j=1

[
v j

∂

∂r j

(
dγ vi

dtγ

)
+ a j (r

N , t)
∂

∂v j

(
dγ vi

dtγ

)]
+ ∂

∂t

(
dγ vi

dtγ

)
.

.(3.23)

To show that the cumulant κ{ni } = O(t2n) for n > 2, it is of course possi-
ble to work out this cumulant straightforwardly using (3.9), (3.22), (3.23) and
(3.17), in that order. Such a procedure was essentially followed by Schofield(2) for
κn = κ{n,0,0,...} = 〈〈�r [n]

1 〉〉 for n ≤ 6 and Sears (7) for n ≤ 8 for equilibrium fluids.
In their expressions many cancellations occurred before κn could be seen to be,
for these cases, of the 2n-th order in t instead of the n-th order in t . These cancel-
lations seemed to happen as a consequence of equilibrium properties. However,
by carrying out the same straightforward procedure for the more general class of
non-equilibrium initial conditions in (3.17), we have found that, while odd mo-
ments are no longer zero, still κn = O(t2n) for n = 3, 4, 5 and 6. These results for
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κ3, κ4, κ5 and κ6 naturally led us to propose the Theorem. Because the straight-
forward calculations for this non-equilibrium case are very lengthy, they will not
be presented here. In any case this procedure is not very suited to determine the
order in t of κ{ni } for general ni , because with increasing order n =∑N

i=1 ni an
increasing number of terms have to be combined (taking together equal powers of
t from the various products of moments) before they can be shown to be zero.

Our strategy for proving that nth order cumulants κ{ni } = O(t2n) for all n > 2,
will be to exploit the Gaussian distribution of the velocities as much as possible.
But we can only hope to use the Gaussian nature of the velocities if we succeed
in bringing out explicitly the dependence of the coefficients of the power series
in t of the cumulants on the velocities. This dependence has so far only been
given implicitly—the cumulants are related to the moments by (3.9), the moments
contain [�ri ]	, �ri is expanded in the time t in (3.22), and the coefficients in
that expansion are the derivatives of the velocity vi , which can be found by using
(3.23) recursively. To make this more explicit, the first step of the proof will be to
expand the cumulants as a powers series in the time t and the second step will be
to express this series more explicitly in the velocities. In the third and last step we
will then use the properties of Gaussian distributed variables, i.e., the velocities,
to complete the proof of the Theorem.

It turns out that the properties of Gaussian distributed variables that we will
require in the third step of the proof are formulated for independent Gaussian
variables whose mean is zero, while in (3.17) the velocities are Gaussian but
do not have zero mean, nor are they independent (because �i j �= 0 for i �= j in
general). For this reason, it is convenient to introduce already at this point new
velocity variables whose mean is zero (cf. (3.17)):

Vi ≡ vi − 〈vi 〉 = vi − ui . (3.24)

The Vi are generalizations of the peculiar velocities used in kinetic theory and
will be referred to in the general case treated in this paper as peculiar velocities as
well. For the same reason, it is convenient to get rid of the statistical dependence
of the initial velocities in (3.17) by bringing the (positive) matrix � to its diagonal
form ξiδi j . This can be accomplished by an orthogonal transformation. We will
assume here that this orthogonal transformation has been performed so that �

is diagonal, and will show at the end of the proof that the form (3.20) of the
Theorem is invariant under such a transformation (while the coefficients c{ni } do
change).

Substituting (3.24) into the time expansion in (3.22) and into the probability
distribution (3.17) (using that � is now diagonal), gives the expansion of �ri and
the probability distribution P(rN , V N ) in their peculiar velocity form:

�ri = ui t +
∞∑

γ=1

tγ

γ !

dγ−1Vi

dtγ−1

∣∣∣
t=0

. (3.25)
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P(rN , V N ) = f (rN )
N∏

i=1

√
2πξi exp

[− 1
2ξi V

2
i

]
(3.26)

respectively. In order to make future expressions less complicated we introduce
for the coefficients in (3.25) the notation (γ = 1, 2, . . .)

Xiγ (rN , V N ) = 1

γ !

dγ−1Vi

dtγ−1

∣∣∣
t=0

. (3.27)

Thus (3.25) becomes

�ri = ui t +
∞∑

γ=1

Xiγ (rN , V N ) tγ , (3.28)

We remark here that in the double indices of Xiγ (rN , V N ), the first index always
pertains to a particle number and will be denoted by the roman letter i , while the
second pertains to an order in t and will be denoted by the Greek letter γ . Below,
we will drop the explicit dependence of the Xiγ on rN and V N .

We will now start the actual proof of the Theorem for general n.

3.3.2. First Step: Expanding the Cumulants in the Time t

The infinite number of terms in the time expansion �ri in (3.28) means that
to get the power expansion in t of the cumulants κ{ni } = 〈〈�r [n1]

1 ; . . . ; �r [nN ]
N 〉〉

occurring on the lhs of (3.20), we would use (3.9) with

Q → N , q → i, Aq → �ri . (3.29)

and combine the infinite number of terms coming from (3.28). Obviously if we
are interested in the cumulants up to O(t2n−1), where n =∑N

i=1 ni (cf. (3.21)), we
should not have to retain all these terms in (3.28), but only those up to O(t2n−1).
As a matter of fact, we need even less terms, namely only terms up to O(tn) in
(3.28), as the following reasoning shows. The cumulants occurring on the lhs of
(3.20) are given in terms of the moments 〈�r 	1

1 �r 	2
2 . . . �r 	N

N 〉 = 〈∏N
i=1 �r 	i

i 〉 by
(3.9). Taking the terms up to the n-th order in t in (3.28), i.e., writing �ri = ui t +∑n

γ=1 Xiγ tγ + O(tn+1), it is straightforward to show that the moments satisfy

〈 N∏
i=1

�r 	i
i

〉
=
〈 N∏

i=1


ui t +

n∑
γ=1

Xiγ tγ




	i〉
+ O(tn+∑N

i=1 	i ) (3.30)
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so that, for given p{	},

∏
{	}

〈 N∏
i=1

�r 	i
i

〉p{	}

=
∏
{	}

〈 N∏
i=1


ui t +

n∑
γ=1

Xiγ tγ




	i〉p{	}

+ O
(
tn+∑{	} p{	}

∑N
i=1 	i

)
.

(3.31)

Products of this kind occur in the definition of the cumulants on the rhs of (3.9), and
are summed over p{	} with the restriction that (with q = i here)

∑
{	} 	i p{	} = ni .

Since also
∑N

i=1 ni = n, (3.31) becomes

∏
{	}

〈 N∏
i=1

�r 	i
i

〉p{	}

=
∏
{	}

〈 N∏
i=1

(
ui t +

n∑
γ=1

Xiγ tγ

)	i
〉p{	}

+ O(t2n). (3.32)

As this holds for each such expression on the rhs of 3.9 (with 3.29), we have for
its lhs

κ{ni } = 〈〈�r [n1]
1 ; . . . ; �r [nN ]

N
〉〉

=
〈(

u1t +
n∑

γ=1

X1γ tγ

)[n1]

; . . . ;

(
uN t +

n∑
γ=1

XNγ tγ

)[nN ]〉

+O(t2n). (3.33)

We remark that the first term on the rhs of this equation gives all powers
tn up to t2n−1, which we are interested in, as well as some of the powers of t
higher than 2n, which we are not interested in. The second term, i.e., O(t2n) only
contains powers of t of 2n and higher. So with (3.33) we have established that
for the lower powers of t only n terms in the time expansion of �ri are needed,
but we have not separated the powers of t lower and higher than 2n completely
yet.

For that purpose we continue from (3.33) and use first the shift invariance
property of cumulants explained at the end of Sec. 3.1, to obtain from (3.33)

κ{ni } =
〈(

n∑
γ=1

X1γ tγ

)[n1]

; . . . ;

(
n∑

γ=1

XNγ tγ

)[nN ]〉

+
N∑

i=1

ui t δni 1

∏
j �=i

δn j 0 + O(t2n). (3.34)
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Furthermore, using the multinomial expansion in (3.12), we can write

〈(
n∑

γ=1

X1γ tγ

)[n1]

; . . . ;

(
n∑

γ=1

XNγ tγ

)[nN ]〉
=

∑
{niγ ≥0}∑n
γ=1 niγ =ni

[ N∏
i=1

ni !∏n
γ=1 niγ !

]

× 〈〈X [n11]
11 ; X [n12]

12 ; . . . ; X [nN n ]
Nn

〉〉
t
∑N

i=1

∑n
γ=1 niγ γ (3.35)

Note that the summation indices niγ arise from the multinomial expansion, where
i denotes a particle index and γ runs from 1 to n. For κ{ni } in (3.34), we need
this quantity only explicitly up to O(t2n−1), so powers of t higher than 2n − 1
may be discarded (i.e., combined with the O(t2n) term) and only powers lower
than 2n need to be kept. Hence, in the exponent on the rhs of (3.35), we only
need terms with

∑N
i=1

∑n
γ=1 niγ γ < 2n. Since also n =∑N

i=1

∑n
γ=1 niγ , we ob-

tain
∑N

i=1

∑n
γ=1 niγ γ < 2

∑N
i=1

∑n
γ=1 niγ , or

∑N
i=1 ni1 >

∑N
i=1

∑n
γ=2 niγ (γ −

2). Combining this condition with (3.34) and (3.35), and using Xi1 = Vi (cf.
(3.27)), we find that the expansion of an nth order cumulant in time t up to
O(t2n−1) is given by

κ{ni } =
∑

{niγ ≥0}∑n
γ=1 niγ =ni∑N

i=1 ni1 >
∑N

i=1

∑n
γ=2 niγ (γ−2)

[ N∏
i=1

ni !∏n
γ=1 niγ !

]

× 〈〈V [n11]
1 ; . . . ; V [nN 1]

N ; X [n12]
12 ; . . . ; X [nN n ]

Nn

〉〉
t
∑N

i=1

∑n
γ=1 niγ γ

+
N∑

i=1

ui t δni 1

∏
j �=i

δn j 0 + O(t2n). (3.36)

We note that in (3.36) only cumulants appear, instead of moments, and,
more importantly, that powers of t lower and higher than 2n are easily identified,
something that in the straightforward moment-based approach mentioned above
only happens after a lengthy calculation.

3.3.3. Second Step: Writing Cumulants in Terms of Peculiar Velocities

The dependence of κ{ni } in (3.36) on the peculiar velocities V N follows from
the dependence of the Xiγ on the V N .

According to (3.27), the coefficients Xiγ can be determined using

Xiγ (rN , V N ) = X̃iγ (rN , V N , t)
∣∣
t=0

, (3.37)
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where we have defined

X̃iγ (rN , V N , t) = 1

γ !

dγ−1Vi

dtγ−1
(3.38)

taken at time t . Below, we will suppress the explicit dependence of X̃iγ on rN ,
V N and t . The X̃iγ satisfy the recursion relation, from (3.23):

X̃iγ+1

γ + 1
=

N∑
j=1

[
(u j + Vj )

∂ X̃iγ

∂r j

+ a j (r
N , t)

∂ X̃iγ

∂Vj

]
+ ∂ X̃iγ

∂t
. (3.39)

For γ = 2, (3.38), (3.24) and (3.16) show that X̃i2 = (dVi/dt)/2 =
ai (rN , t)/2, which is independent of V N and is thus a polynomial in the pe-
culiar velocities V N of total degree zero. Using the recursion relation (3.39) one
sees that if X̃iγ is a polynomial in V N of total degree γ − 2 then on the rhs of
(3.39), the term (u j + Vj )∂ X̃iγ /∂r j is a polynomial of total degree γ − 1, while
a j∂ X̃iγ /∂Vj has a total degree of γ − 3, and ∂ X̃iγ /∂t has a total degree γ − 2.
The highest total power of V N in X̃iγ+1 is thus γ − 1.

In other words, for γ ≥ 2, X̃iγ is a polynomial in the peculiar velocities V N

of total degree γ − 2, with coefficients that can depend on the positions of the
particles. From (3.37) we then see that also Xiγ = X̃iγ (t = 0) is a polynomial in
the peculiar velocities V N of total degree γ − 2. Therefore we can write for the
dependence of Xiγ on V N

Xiγ =
γ−2∑
p=0

∑
∑

j p j =p

bi{p j }(r
N ) V p1

1 · · · V pN
N (3.40)

It turns out that in the third step of the proof we will not need the precise and
explicit forms of the bi{p j }(r

N ), but only that the total degree of the polynomial
Xiγ is γ − 2.

3.3.4. Third Step: Using the Gaussian Nature of Velocities

Given the polynomial nature of the Xiγ as a function of V N in (3.40), we can
give the following interpretation to the second condition under the summation sign
in (3.36), i.e.,

∑N
i=1 ni1 >

∑N
i=1

∑n
γ=2 niγ (γ − 2). Each expression of the form

X
[niγ ]
iγ in the cumulant 〈〈V [n11]

1 ; . . . ; V [nN 1]
N ; X [n12]

12 ; . . . ; X [nN n ]
Nn 〉〉 in (3.36) (although

devoid of meaning outside of cumulant brackets) signifies that niγ is the highest
power of Xiγ occuring inside the averages in the expression for the cumulant in
terms of moments on the right hand side of (3.9). Because Xiγ is a polynomial in
V N of total degree (γ − 2), this highest power of Xiγ is a polynomial in V N of

total degree niγ (γ − 2). Then, all such expressions X
[niγ ]
iγ together in the cumulant
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〈〈V [n11]
1 ; . . . ; V [nN 1]

N ; X [n12]
12 ; . . . ; X [nN n ]

Nn 〉〉 in (3.36) generate polynomials of at most
degree

∑n
γ=2 niγ (γ − 2) inside the averages in the expression for the cumulant in

terms of moments on the right hand side of (3.9). On the other hand the expressions
V [ni1]

i in the cumulant 〈〈V [n11]
1 ; . . . ; V [nN 1]

N ; X [n12]
12 ; . . . ; X [nN n ]

Nn 〉〉 in (3.36) together
generate polynomials of at most degree

∑N
i=1 ni1. Thus, the condition

∑N
i=1 ni1 >∑N

i=1

∑n
γ=2 niγ (γ − 2) in (3.36) indicates that the total degree in V N generated

by the Vi in the cumulant 〈〈V [n11]
1 ; . . . ; V [nN 1]

N ; X [n12]
12 ; . . . ; X [nN n ]

Nn 〉〉 is larger than
the total degree generated by the Xiγ .

The crucial point is now that the auxiliary Theorem A in the Appendix can
be applied to cumulants of this form. This theorem is most conveniently expressed
in terms of general random variables Pq , which were used there as well to denote
general random variables, but which are now polynomial functions of the peculiar
velocities V N . Theorem A states that if Pq (q = 1 . . . Q) are polynomials of
total degree dq in the independent, zero-mean Gaussian distributed V N , and nq

and pi are nonnegative integers, then 〈〈V [p1]
1 ; . . . ; V [pN ]

N ; P [n1]
1 ; . . . ; P

[nQ ]
Q 〉〉 = 0 if∑N

i=1 pi >
∑Q

q=1 nqdq , except when all nq≥1 = 0 and one pi = 2, in which case

it becomes just 〈〈V [2]
i 〉〉.

In order to apply Theorem A to each term in the summation on the
rhs of (3.36), we need to rewrite 〈〈V [p1]

1 ; . . . ; V [pN ]
N ; X [n12]

12 ; . . . ; X [nN n ]
Nn 〉〉 as

〈〈V [p1]
1 ; . . . ; V [pN ]

N ; P [n1]
1 ; . . . ; P

[nQ ]
Q 〉〉. This can be achieved by a mapping of single

to double indices, i.e., by setting

Q → N (n − 1) (3.41a)

(P1, n1, d1) → (X12, n12, 0) (Pn, nn, dn) → (X22, n22, 0)
(P2, n2, d2) → (X13, n13, 1) (Pn+1, nn+1, dn+1) → (X23, n23, 1)

(P3, n3, d3) → (X14, n14, 2)
...

...
...

(Pn−1, nn−1, dn−1) → (X1n, n1n, n − 2) (PQ, nQ, dQ) → (XNn, nNn, n − 2)
(3.41b)

and

pi → ni1 (3.41c)

Then
∑Q

q=1 nqdq is seen to be equal to
∑N

i=1

∑n
γ=1 niγ (γ − 2) = d. As the re-

striction on the summation in (3.36) shows, for all terms on the rhs of (3.36)
(except the O(t2n) of course),

∑N
i=1 ni1 is larger than this d. Theorem A tells

us that the cumulant occurring in each term of these terms is then zero except
when ni2 = ni3 = · · · nin = 0 for all i and only one ni1 = 2 and n j �=i1 = 0. This
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exception means, since also
∑N

i=1

∑n
γ=1 niγ = n, that n = ni1 = 2. So the only

possible nonzero term in the sum in (3.36) occurs for n = 2. Furthermore, for
n = 1, the last term

∑N
i=1 ui t δni 1

∏
j �=i δn j 0 in (3.36) is also left.

Thus, using Theorem A, we have shown that each term in (3.36) is zero
separately except for n = 1 and n = 2, so that

κ{ni } =
{
O(tn) if n ≤ 2

O(t2n) if n > 2
(3.42)

remains on the rhs of (3.36). Given that κ{ni } can be expanded as a power series in
t , (3.42) coincides with the formulation (3.20) of the Theorem, if we define c{ni } as
the coefficients of the tn and t2n , respectively. This is therefore now proved (with
the proviso that Theorem A is proved in the Appendix), but up to this point only
for diagonal matrices � in the distribution (3.17).

To obtain the same result for non-diagonal matrices � in, (3.17), we
apply a transformation S (an orthogonal N × N matrix with elements Si j )
such that �′ = S · � · ST is diagonal. In this transformation, r ′

i =∑N
j=1 Si jr j ,

v′
i =∑N

j=1 Si jv j and also �r ′
i =∑N

j=1 Si j�r j . Since �′ is diagonal, the cumu-
lants of the primed displacements �r ′

i satisfy the Theorem. The cumulants of
the original displacements �ri =∑N

j=1 Sji�r ′
j can be expressed in terms of the

primed ones using the multinomial expansion (3.12), with the result

κ{ni } =
∑
{n1 j }∑
j n1 j =n1

n1!

n11! · · · n1N !
· · ·

∑
{nN j }∑

j nN j =nN

nN !

nN1! · · · nNN !

× 〈〈(S11�r ′
1)[n11]; . . . ; (SN1�r ′

N )[n1N ];

× (S12�r ′
1)[n21]; . . . ; (SN2�r ′

N )[n2N ]; . . . ; (SNN�r ′
N )[nNN ]

〉〉
(3.43)

Since in each term on the right hand side the
∑N

i, j=1 ni j =∑N
i=1 ni = n (cf. (3.12)),

and each term contains the cumulants of primed displacements, which were already
shown to satisfy the Theorem, each term scales as t2n if n > 2 and as tn if n ≤ 2,
and therefore so does the sum. This proves that (3.20) of the Theorem holds for
arbitrary (positive symmetric) matrices �. �

3.4. Expression for the Coefficients in the Theorem

We will now show how one can determine the coefficients of the t2n term of
κ{ni }, i.e. c{ni } in (3.20).
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For n = 1 and n = 2, it is straightforward to show that (24)

c{1,0,0,0,...} = 〈v1〉 = u1 (3.44a)

c{2,0,0,0,...} = 〈V 2
1

〉 = [�−1]11 (3.44b)

c{1,1,0,0,...} = 〈V1V2〉 = [�−1]12. (3.44c)

(and similarly for c{0,1,0,0,0,...} and c{0,2,0,0,0,...}, c{1,0,1,0,0,...}, c{0,1,1,0,0,...}, etc.).
To find c{ni } for n > 2 one can use a similar calculation of κ{ni } as used above,

but taking one additional term Xin+1tn+1 in the time expansion of �ri in (3.33)
into account. Performing then the same kind of manipulations as in the proof
above, one arrives for n > 2 at

c{ni } =
∑

{niγ ≥0}∑n+1
γ=1 niγ =ni∑N

i=1

∑n+1
γ=1 γ niγ =2n

[
ni !∏n+1

γ=1 niγ !

]

× 〈〈X [n11]
11 ; . . . ; X

[n1,n+1]
1,n+1 ; X [n21]

21 ; . . . ; X
[nN ,n+1]
N ,n+1

〉〉
. (3.44d)

where n was defined in Eq. (3.21).
Note that for the case of a cumulant of one displacement, e.g., 〈〈�rn

i 〉〉 in
(2.17), one has

cn = c{...,0,n,0,...} (3.45)

where the n on the rhs is at the i th position.
Using (3.44d), we can give some examples of cn for n = 3 and n = 4:

c3 = 3
〈〈

V [2]
i ; Xi4

〉〉+ 6
〈〈

Vi ; Xi2; Xi3
〉〉+ 〈〈X [3]

i2

〉〉
(3.46)

c4 = 4
〈〈

V [3]
i ; Xi5

〉〉+ 6
〈〈

V [2]
i ; X [2]

i3

〉〉+ 12
〈〈

V [2]
i ; Xi2; Xi4

〉〉
+12

〈〈
Vi ; X [2]

i2 ; Xi3
〉〉+ 〈〈X [4]

i2

〉〉
. (3.47)

while an example of the coefficients c{ni } for cumulants involving different degrees
of freedom, e.g. 〈〈�r1; �r2; �r3〉〉 is, from (3.44d),

c{1,1,1,0,0...} = 〈〈V1; V2; X34〉〉 + 〈〈V1; X22; X33〉〉 + 〈〈V1; X23; X32〉〉
+ 〈〈V1; X24; X31〉〉 + 〈〈X12; V2; X33〉〉 + 〈〈X12; X22; X32〉〉
+ 〈〈X12; X23; V3〉〉 + 〈〈X13; V2; X32〉〉
+ 〈〈X13; X22; V3〉〉 + 〈〈X14; V2; V3〉〉. (3.48)
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We note that although the Xiγ are useful to derive these expressions for c{ni },
to evaluate them in practice requires additional work. One would first need to
write the Xiγ as X̃iγ (rN , V N , t = 0) using (3.37), and work out the recursion
relation (3.39). Furthermore, the cumulants would have to be written in terms of
averages using (3.9). The values of these averages will depend on the system,
i.e., the accelerations ai , and their evaluation will in general require a numerical
approach, which we will explore in future work.

4. CONCLUSIONS

In this paper, we have proved a mathematical theorem on the correlations of
the initial time displacements of particles (or in general of coordinates associated
with degrees of freedom) for a class of dynamical systems whose main restriction
is that the initial distribution of the velocity-variables is a (multivariate) Gaussian,
independent of the position-variables.

Among the physical applications of this Theorem is the result that a well-
known short-time expansion of the Van Hove self-correlation is well-behaved: each
subsequent term in the expansion is smaller than the previous one for small enough
t , something which had been suspected but not established before. It has also been
shown on the basis of the Theorem that in the studies of undercooled liquids and
glasses, using cumulants instead of the usual non-Gaussian parameters may give
more physical information. Furthermore, it was shown that the expansion used in
the Green’s functions theory is also well-behaved if the velocity distributions are
initially Gaussian, so that this theory, which can describe non-equilibrium mass
transport processes on short time and length scales, has now been given a firmer
basis.

APPENDIX

In the third step of the proof of the main Theorem, we needed the following
auxiliary theorem to prove the main Theorem.

Theorem A. Let Vi be a set of N statistically independent, zero-mean Gaussian
variables, collectively denoted by V N , and let Pq (q = 1 . . . Q) be a set of Q
polynomials in V N of total degree dq . Let pi (i = 1 . . .N ) and nq (q = 1 . . . Q)
be nonnegative integer numbers. Then if

N∑
i=1

pi >

Q∑
q=1

nqdq (A.1)
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and at least one nq �= 0, the following cumulant vanishes:

〈〈
V [p1]

1 ; . . . ; V [pN ]
N ; P [n1]

1 ; . . . ; P
[nQ ]
Q

〉〉 = 0 (A.2)

while if all nq are zero, one has

〈〈
V [p1]

1 ; . . . ; V [pN ]
N

〉〉 = N∑
i=1

〈〈
V [2]

i

〉〉
δpi 2

N∏
j �=i

δp j 0. (A.3)

Proof of Theorem A. Since we have not found a proof of this theorem in
the literature, we will give it here, but before we can prove Theorem A, we
need four lemmas and the definition of a θN -modified average. This defini-
tion will serve, in conjunction with Lemma 1 below, to construct a convenient
generating function (which takes the form of a θN -modified cumulant) for the
quantities 〈〈V [p1]

1 ; . . . ; V [pN ]
N ; P [n1]

1 ; . . . ; P
[nQ ]
Q 〉〉 that occur in Theorem A. Work-

ing with this generating function will be more convenient than trying to cal-
culate each 〈〈V [p1]

1 ; . . . ; V [pN ]
N ; P [n1]

1 ; . . . ; P
[nQ ]
Q 〉〉 individually. After this generat-

ing function has been introduced, Lemma 2 and Lemma 3 are presented and
proved, which use the Gaussian nature of the Vi to give properties of aver-
ages and θN -modified averages of powers of the Vi , which allow one to prove
a polynomial property (Lemma 4) of the generating function of the quantities
〈〈V [p1]

1 ; . . . ; V [pN ]
N ; P [n1]

1 ; . . . ; P
[nQ ]
Q 〉〉. This polynomial property will be the cen-

tral ingredient to complete the proof.
First we remark that below, V N will always denote the same set of N statis-

tically independent, zero-mean Gaussian distributed variables Vi of Theorem A.
The definition of θN -modified averages and cumulants is:

Definition. The θN -modified average of a general variable P (which below will
always be a polynomial in V N ) is defined as

〈P〉θN ≡
〈
P exp

∑N
i=1 θi Vi

〉
〈
exp
∑N

i=1 θi Vi

〉 = e− 1
2

∑N
i=1 θ2

i

〈
V 2

i

〉〈
P exp

N∑
i=1

θi Vi

〉
(A.4)

where the θi (i = 1 . . .N ) are real numbers.
Similarly, θN -modified moments are generally defined as the θN -modified

averages of powers of general variables (i.e., functions of V N , and in the main text
also of rN ), and θN -modified cumulants are defined as having the same relation
to θN -modified moments as normal cumulants have to normal moments. θN -
modified cumulants are therefore also given through the θN -modified cumulant
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generating function as:

〈〈
P [n1]

1 ; . . . ; P
[nQ ]
Q

〉〉
θN ≡

Q∏
q=1

∂nq

∂(ikq )nq
log

〈
exp

Q∑
q=1

ikq Pq

〉
θN

∣∣∣∣
{kq }=0

. (A.5)

The generating function nature of the θN -modified cumulants follows from:

Lemma 1. (relation between cumulants and θN -modified cumulants) 9 The θN -
modified cumulants of a set of variables P1, . . . PQ are related to the normal
cumulants by 〈〈

P [n1]
1 ; . . . ; P

[nQ ]
Q

〉〉
θN =

∞∑
p1=0

· · ·
∞∑

pN =0

[ N∏
i=1

θ
pi

i

pi !

]

× 〈〈V [p1]
1 ; . . . ; V [pN ]

N ; P [n1]
1 ; . . . ; P

[nQ ]
Q

〉〉
(A.6)

if at least one nq �= 0, while it is zero otherwise.

Proof. For case in which at least one nq is nonzero, we start with the rhs of (A.6)
and use the expression for the cumulants in (3.8):

∞∑
p1=0

· · ·
∞∑

pN =0

[ N∏
i=1

θ
pi

i

pi !

] 〈〈
V [p1]

1 ; . . . ; V [pN ]
N ; P [n1]

1 ; . . . ; P
[nQ ]
Q

〉〉

=
∞∑

p1=0

· · ·
∞∑

pN =0

N∏
i=1

θ
pi

i

pi !

∂ pi

∂(ik ′
i )

pi

Q∏
q=1

∂nq

∂(ikq )nq

× log

〈
exp

[ N∑
i=1

ik ′
i Vi +

Q∑
q=1

ikq Pq

]〉∣∣∣∣
{kq }={k ′

i }=0

(A.7)

We recognize the Taylor series, i.e., that
∑∞

pi =0([−iθi ]pi /pi !) ∂ pi f (k ′
i )/

∂k ′pi

i

∣∣∣
k ′

i =0
= f (−iθi ) to write this as

∞∑
p1=0

· · ·
∞∑

pN =0

[ N∏
i=1

θ
pi

i

pi !

] 〈〈
V [p1]

1 ; . . . ; V [pN ]
N ; P [n1]

1 ; . . . ; P
[nQ ]
Q

〉〉

=
Q∏

q=1

∂nq

∂(ikq )nq
log

〈
exp

[ N∑
i=1

θi Vi +
Q∑

q=1

ikq Pq

]〉∣∣∣∣
{kq }=0

(A.8)

9 For N = Q = n1 = 1 this lemma coincides with the last exercise of section XVI.3 in Van Kampen’s
book. (24)
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Using definition (A.4), we obtain

∞∑
p1=0

· · ·
∞∑

pN =0

[ N∏
i=1

θ
pi

i

pi !

] 〈〈
V [p1]

1 ; . . . ; V [pN ]
N ; P [n1]

1 ; . . . ; P
[nQ ]
Q

〉〉

=
Q∏

q=1

∂nq

∂(ikq )nq

[
log

〈
exp

Q∑
q=1

ikq Pq

〉
θN

+ 1

2

N∑
i=1

θ2
i

〈
V 2

i

〉]∣∣∣∣
{kq }=0

(A.9)

Since we are considering the case that at least one nq is nonzero, the contribution
from the kq -independent 1

2

∑N
i=1 θ2

i 〈V 2
i 〉 vanishes when ∂/∂(ikq ) acts on it. The

remainder on the rhs of (A.9) is by definition (A.5) equal to the lhs of (A.6).
The case n1 = · · · = nQ = 0 is trivial, for then 〈〈Pn1

1 . . . P
nQ

Q 〉〉θN = 0 since
a zeroth cumulant is always zero. �

A consequence of this lemma, i.e., of (A.6), is that repeated deriva-
tives with respect to θi of 〈〈P [n1]

1 ; . . . ; P
[nQ ]
Q 〉〉θN taken at θi = 0 generate the

〈〈V [p1]
1 ; . . . ; V [pN ]

N ; P [n1]
1 ; . . . ; P

[nQ ]
Q 〉〉.

The second lemma concerns the average of a product of powers of the Vi and
a single polynomial in V N .

Lemma 2. (Averages of powers of Vi times a polynomial in V N ) Let P be
a polynomial function of total degree d in V N . Given a set of N nonnegative
integers si , collectively denoted by sN , and a set of N “parities” δi with each δi

zero or one, one can write〈 N∏
i=1

V 2si +δi
i P

〉
= Ps∗ ({s j })

N∏
i=1

(2si + 2δi − 1)!!
〈
V 2

i

〉si (A.10)

where Ps∗ ({s j }) is a polynomial in the s j of total degree s∗, which satisfies

s∗ ≤ d −∑N
i=1 δi

2
. (A.11)

Proof. We start by writing out the polynomial P as

P =
∑
{pi }∑N

i=1 pi ≤d

b{pi }
N∏

i=1

V pi

i . (A.12)

Of these terms, only those with the same “parity” as the δi (i.e., if δi = 0, pi is
even and if δi = 1, pi is odd) contribute to the average 〈∏N

i=1 V 2si +δi
i P〉, due to
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the even nature of the distribution of the Vi . Thus, one can write pi = 2s ′
i + δi and

obtain 〈 N∏
i=1

V 2si +δi
i P

〉
=

∑
{s ′

i }∑N
i=1(2s ′

i +δi )≤d

b{2s ′
i +δi }

N∏
i=1

〈
V

2(si +s ′
i +δi )

i

〉
. (A.13)

Using 〈V 2s
i 〉 = (2s − 1)!!〈V 2

i 〉s , (23) we obtain

〈 N∏
i=1

V 2si +δi
i P

〉
=

∑
{s ′

i }∑N
i=1(2s ′

i +δi )≤d

b{2s ′
i +δi }

N∏
i=1

(2si + 2s ′
i + 2δi − 1)!!

〈
V 2

i

〉si +s ′
i +δi

=
∑
{s ′

i }∑N
i=1(2s ′

i +δi )≤d

b{2s ′
i +δi }

N∏
i=1

(2si + 2s ′
i + 2δi − 1)!!

(2si + 2δi − 1)!!

〈
V 2

i

〉s ′
i +δi

×
N∏

i=1

(2si + 2δi − 1)!!
〈
V 2

i

〉si (A.14)

This is of the form stated in (A.10), where

Ps∗ ({s j }) =
∑
{s ′

i }∑N
i=1(2s ′

i +δi )≤d

b{2s ′
i +δi }

N∏
i=1

s ′
i∏

s ′′
i =1

(2si + 2s ′′
i + 2δi − 1)

〈
V 2

i

〉s ′
i +δi (A.15)

This shows that Ps∗ is a polynomial in sN , since it depends on the si only through
finitely many factors (2si + 2s ′′

i + 2δi − 1). In fact, for each term in (A.15), the
number of such factors is

∑N
i=1 s ′

i . Because of the restriction on the sum over {s ′
i }

in (A.15), this number
∑N

i=1 s ′
i is less than or equal to (d −∑N

i=1 δi )/2 for each
term. The total degree s∗ of the polynomial Ps∗ ({s j }), which is the maximum of
this number over all the terms, therefore also satisfies s∗ ≤ (d −∑N

i=1 δi )/2. �

The third lemma concerns a polynomial property of the θN -modified averages
of polynomials P in V N .

Lemma 3. (polynomial property of the θN -modified average of a polynomial
in V N ) Let P be a polynomial of total degree d in V N . Then the θN -modified
average of P is a polynomial in θN of at most the same total degree d.
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Proof. a) Consider first the case that P is a polynomial in the Vi of total degree
d and of definite “parity” for each i , i.e., that it either changes sign or remains
unchanged when Vi is replaced by −Vi . Define the numbers δi such that δi = 0
if P is even in Vi and δi = 1 if it is odd. By the definition of the θN -modified
average in (A.4), expanding the exponent, and using that only even powers of Vi

have a non-zero average, one gets

〈P〉θN = e− 1
2

∑N
i=1 θ2

i

〈
V 2

i

〉

×
∞∑

s1=0

· · ·
∞∑

sN =0

[ N∏
i=1

θ
2si +δi
i

(2si + δi )!

]〈 N∏
i=1

V 2si +δi
i P

〉
(A.16)

Using (A.10) of Lemma 2 and that (2si − 1 + 2δi )!!/(2si + δi )! = 1/(2si si !), we
obtain

〈P〉θN = e− 1
2

∑N
i=1 θ2

i

〈
V 2

i

〉 ∑
{si ≥0}

N∏
i=1

θ
2si +δi
i

〈
V 2

i

〉si +δi

2si si !
Ps∗ ({s j })

=
[ N∏

i=1

[〈
V 2

i

〉
θi

]δi

]
e− 1

2

∑N
i=1 θ2

i

〈
V 2

i

〉 ∑
{si ≥0}

Ps∗ ({s j })
N∏

i=1

[
1
2θ2

i 〈V 2
i 〉]si

si !

(A.17)

Note that the polynomial Ps∗ in s j inside the {si } summation can be generated from
an expression that does not have this polynomial by applying operators θ2

j (∂/∂θ2
j ),

e.g.,

∑
{si ≥0}

s j

N∏
i=1

[
1
2θ2

i

〈
V 2

i

〉]si

si !
= θ2

j

∂

∂θ2
j

∑
{si ≥0}

N∏
i=1

[
1
2θ2

i

〈
V 2

i

〉]si

si !
,

= θ2
j

∂

∂θ2
j

e
1
2

∑N
i=1 θ2

i

〈
V 2

i

〉
. (A.18)

and in general

∑
{si ≥0}

Ps∗ ({s j })
N∏

i=1

[
1
2θ2

i

〈
V 2

i

〉]si

si !
= Ps∗

({
θ2

j

d

dθ2
j

})
e

1
2

∑N
i=1 θ2

i

〈
V 2

i

〉
. (A.19)

Combining this with (A.17) gives

〈P〉θN =
[ N∏

i=1

[〈
V 2

i

〉
θi

]δi

]
e− 1

2

∑N
i=1 θ2

i

〈
V 2

i

〉
Ps∗

({
θ2

j

∂

∂θ2
j

})
e

1
2

∑N
i=1 θ2

i

〈
V 2

i

〉
. (A.20)



Theorem on the Distribution of Short-Time Particle Displacements 35

In this expression, the differential operators (∂/∂θ2
j ) “bring down” factors of θ2

j
from the exponent to its right. That exponent itself is then canceled by the exponent
to the left of the Ps∗ operator, so that only a polynomial in θN is left. The total
degree of this polynomial is twice the maximum number of factors brought down
by the operators (twice because the squares of the θ j are brought down). This
maximum number is simply the total degree of Ps∗ , i.e., s∗. Counting finally also
the powers of θi of the first product in (A.20), we see that 〈P〉θN is a polynomial in
θN of total degree d ′ = 2s∗ +∑N

i=1 δi . But Lemma 2, in particular (A.11), says
that s∗ ≤ (d −∑N

i=1 δi )/2, so that for a polynomial P of definite parity, its total
degree d ′ satisfies d ′ ≤ d.

b) To show that the same is true for a general polynomial, note that any
polynomial P can always be written as a sum of polynomials of definite parity.
Since the θN -modified average of that sum is the sum of the θN -modified average
of each term, and each term is a polynomial in θN of total degree d ′ ≤ d, 〈P〉θN

is also a polynomial in θN of total degree d ′ ≤ d. �

The next and final lemma we need before we can prove Theorem A concerns
θN -modified cumulants of several polynomials in V N .

Lemma 4. (θN -modified cumulants of polynomials in V N ) Let Pq (q = 1 . . . Q)
be a set of polynomials of total degree dq in the V N . Then the θN -modified

cumulant 〈〈P [n1]
1 ; . . . ; P

[nQ ]
Q 〉〉θN is a polynomial in θN of a total degree of at most

d =∑Q
q=1 nqdq .

Proof. Because the θN -modified cumulants are defined formally in precisely
the same way as normal cumulants [i.e., (A.5) vs. (3.8)], the relation (3.9) between
cumulants and moments applies to the θN -modified cumulants and moments as
well. According to that relation, the θN -modified cumulant 〈〈P [n1]

1 ; . . . ; P
[nQ ]
Q 〉〉θN

can be expressed as a sum of terms each of which contains a product of the
moments 〈P	1

1 · · · P
	Q

Q 〉θN raised to the power p{	} (where the product is over all
possible sets {	} = {	1, . . . , 	Q} with the restrictions stated in (3.9)). Because Pq

is required by the conditions of the lemma to be a polynomial in V N of total degree
dq , P

	q
q is a polynomial in V N of total degree 	qdq , and the product P	1

1 · · · P
	Q

Q

is a polynomial in V N of total degree
∑Q

q=1 	qdq . According to Lemma 3, each

θN -modified moment 〈P	1
1 · · · P

	Q

Q 〉θN is then a polynomial in θN of a total degree

of at most
∑Q

q=1 	qdq . Its p{	}-th power in (3.9) is then a polynomial in θN of

total degree p{	}
∑Q

q=1 	qdq (at most), and the product (over {	}) that occurs on

the rhs of (3.9) is of total degree d ≡∑{	} p{	}
∑Q

q=1 	qdq (at most). Since p{	} is
summed over in (3.9) with the restriction that

∑
{	} p{	}	q = nq , the total degree
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d of the expressions
∏

{	}〈P	1
1 · · · P

	Q

Q 〉p{	}
θN can be rewritten as d =∑Q

q=1 nqdq (at
most). Each term in the sum over p{	} on the rhs of (3.9) is therefore (at most) of

this total degree d, so that the full expression, i.e. 〈〈P [n1]
1 ; . . . ; P

[nQ ]
Q 〉〉θN , is also a

polynomial in θN of a total degree of at most d. �

Conclusion of the proof of Theorem A

We can now finish the proof of Theorem A. To consider 〈〈V [p1]
1 ; . . . ; V [pN ]

N ;

P [n1]
1 ; . . . ; P

[nQ ]
Q 〉〉 as on the lhs of (A.2) in the case that at least one nq �= 0, we

look at its generating function, i.e., 〈〈P [n1]
1 ; . . . ; P

[nQ ]
Q 〉〉θN . According to (A.6)

of Lemma 1, this generating function admits a power series in θN . At the
same time, according to Lemma 4 (whose proof required Lemmas (2) and (3)
), 〈〈P [n1]

1 ; . . . ; P
[nQ ]
Q 〉〉θN is given by a polynomial in θN of a total degree of at

most d =∑Q
q=1 nqdq , so its power series in θN in (A.6) terminates (at the latest)

after
∑N

i=1 pi = d. Since these lemmas should be valid for all θN , each coeffi-
cient of the terms with

∑N
i=1 pi > d must be zero, i.e., using (A.6) of Lemma 1,

〈〈V [p1]
1 ; . . . ; V [pN ]

N ; P [n1]
1 ; . . . ; P

[nQ ]
Q 〉〉 = 0, which is (A.2) of Theorem A. Finally,

for the case nq = 0 for all q = 1 . . . Q, (A.3) of Theorem A follows simply from
the zero-mean Gaussian nature of the Vi and their statistical independence. �
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